

Class: XIIth Date:

potential is

a) Is same throughout

a) $(\phi_2 - \phi_1)\epsilon_0$

a) R_1/R_2

DAILY PRACTICE PROBLEMS DPP No. : 2

c) $(R_1/R_2)^2$

Subject: PHYSICS

d) $(R_2/R_1)^2$

d) $\epsilon_0(\phi_1 - \phi_2)$

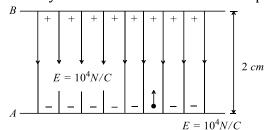
Topic :-Electric charges and fields

1. Two charged spheres of radii R_1 and R_2 having equal surface charge density. The ratio of their

2. The magnitude of electric field *E* in the annular region of a charged cylindrical capacitor

b) R_2/R_1

c) Varies as 1/r, where r is the distance from the axis d) Varies as $1/r^2$, where r is the distance from the axis

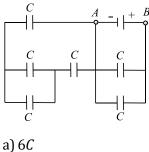

b) $\frac{\phi_1 + \phi_2}{\varepsilon_0}$

b) Is higher near the outer cylinder than near the inner cylinder

3.	A charge of <i>Q coulomb</i> is placed on a solid piece of metal irregular shape. The charge will distribute itself			
	a) Uniformly in the metal object			
	b) Uniformly on the surface of the object			
	c) Such that potential energy of the system is minimised			
	d)Such that the total heat loss is minimised			
1				
4.	Charge on α -partic		200 40-190	12 6 4 40 = 19 6
	•	•	c) $3.2 \times 10^{-19} C$	•
5.	Two equal charges are separated by a distance d . A third charge placed on a perpendicular			
	bisector at x distance will experience maximum coulomb force when			
	a) $x = \frac{d}{\sqrt{2}}$	$b) x = \frac{d}{2}$	$c) x = \frac{d}{2\sqrt{2}}$	$d)x = \frac{d}{2\sqrt{3}}$
6.	Two unit negative charges are placed on straight line. A positive charge q is placed exactly a			arge q is placed exactly at
	the mid-point between these unit charges. If the system of these three charges is in			
	equilibrium, the value of q (in C) is			
	a) 1.0	b) 0.75	c) 0.5	d) 0.25
7.	A capacitor of capa	capacitor of capacitance value 1μ F is charged to 30 V and the battery is then disconnected		
	it is connected across a 2μ F capacitor, the energy lost by the system is			
	a) 300 μ <i>J</i>	b) 450 <i>μJ</i>	c) 225 μJ	d) 150 <i>μJ</i>
8.	If the electric flux entering and leaving an enclosed surface respectively are ϕ_1 and ϕ_2 , the			
	electric charge inside the surface will be			

c) $\frac{\Phi_1 - \Phi_2}{\epsilon_0}$

An electron is released from the bottom plate A as shown in the figure $(E = 10^4 N/C)$. The velocity of the electron when it reaches plate B will be nearly equal to

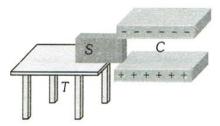


- a) $0.85 \times 10^7 \ m/s$
- b) $1.0 \times 10^7 \ m/s$
- c) $1.25 \times 10^7 \ m/s$
- d) $1.65 \times 10^7 \ m/s$
- 10. There are two equipotential surfaces as shown in figure. The distance between them is r. The charge of -q coulomb taken from the surface A to B, the resultant work done will be

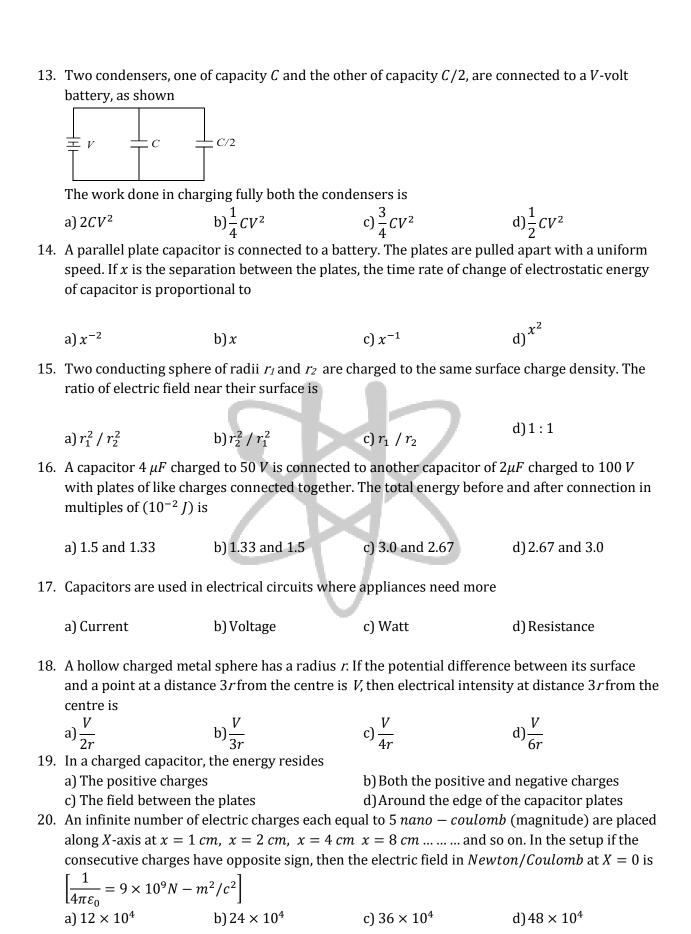
a)
$$W = \frac{1}{4} \frac{q}{r}$$

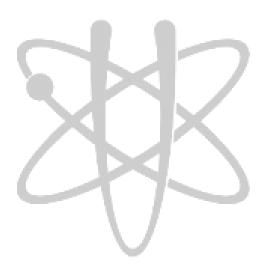
- $W = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2}$ c) $W = -\frac{1}{4\pi\varepsilon_0} \frac{q}{r^2}$ d) W = zero

11. Find equivalent capacitance between *A* and *B*


b) 5C

c) 3*C*


d)^{2C}


12. A frictionless dielectric plate *S* is kept on a frictionless table *T*. A charged parallel plate

capacitance *C* (of which the plates are frictionless) is kept near it. The plate *S* is in between the plates. When the plate S is left between the plates

- a) It will remain stationary on the table
- b) It is pulled by the capacitor and will pass on the other end
- c) It is pulled between the plates and will remain there
- d) All the above statements are false

